跳到主要內容

國泰台股定期定額使用心得

會使用國泰台股定期定額是因為想要小額投資台股,雖然就是買零股的意思,我還是想嘗試看看。

成交價如何?

交給劵商幫你定期購入股票,其中一個要注意的就是成交價,因為如果盤中最高是 100 元,劵商用 101 元買入,不是就貴了 1 元,或是 1% 嗎?

因此我們要注意定期定額買股票的成交價與盤中價格的對比。

零股交易有可能遇到因為交易量較低導致成交價不優的狀況,因此我試了定期定額,看看 0050 成交價如何。
  • 111/09/07,開盤113.1,最高113.15,最低112.10,收盤112.20,成交112.38,還不錯,接近當日低點。
  • 111/10/07,開盤107.40,最高107.40,最低105.1,成交106.73,大約是最高與最低的中間值。
  • 111/11/07,開盤99.80,最高100.85,最低99.55,成交100.33,大約是最高與最低的中間值。
  • 111/12/07,開盤114.50,最高115.85,最低114.20,成交115.00。
  • 112/01/13,開盤118.50,最高118.60,最低116.95,成交117.44。
  • 112/02/13,開盤120.70,最高120.90,最低119.90,成交120.41。
  • 112/03/13,開盤117.95,最高119.10,最低117.40,成交118.80。
  • 112/04/13,開盤120.05,最高120.15,最低119.50,成交119.92。
  • 112/05/15,開盤116.95,最高117.35,最低116.65,成交117.02。

小結論

國泰台股定期定額成交價還算是可以接受,大概就是成交在盤中最高價與最低價的中間。

股利匯款手續費

2023 年 6 月 12 日,我收到國泰交易明細,上面列了一條是股利所得,仔細看了一下,發現配息要收轉帳手續費 10  元,雖然不多,不過這筆股利,是我用定期定額買的美債 ETF 所配的 40 元,40 元收了 10 元,我實際拿到 30 元,40 元 扣了 10 元,算換成百分比,就是 25%,也就是,每次發股利我都要被扣 25 %,非常的高。

因此,我建議如果要用國泰或是別家銀行定期定額買股,一定要把股利匯款手續費考量進去,不然就是一種隱性成本。

季配股利匯款手續費簡易對照表

  • 每次股利發 100 元,成本為 10 %,配息率為 5 %的資產,需要持有 8000 元等值的股票。
  • 每次股利發 1000 元,成本為 1 %,配息率為 5 %的資產,需要持有 80000 元等值的股票。
  • 每次股利發 2000 元,成本為 0.5 %,配息率為 5 %的資產,需要持有 160000 元等值的股票。
  • 每次股利發 100 元,成本為 10 %,配息率為 2.5 %的資產,需要持有 16000 元等值的股票。
  • 每次股利發 1000 元,成本為 1 %,配息率為 2.5 %的資產,需要持有 160000 元等值的股票。
  • 每次股利發 2000 元,成本為 0.5 %,配息率為 2.5 %的資產,需要持有 320000 元等值的股票。
就以季配台股而言,殖利率為 5% 的資產,為了稀釋匯款手續費的影響,將成本降至 1% 至少也要買到 80000 元等值的股票。

換句話說,如果定期定額買得太少,那麼發股利時,光是匯款手續費就可以吃了個大半掉了。

留言

這個網誌中的熱門文章

母體變異數(population variance)、樣本變異數(sample variance)及自由度(degrees of freedom)

母體指的是所有的數據,樣本指的是從母體抽樣的數據,舉例來說,一個班級有40人,它們的身高,40個身高數據,若只針對這個班,就是母體,但是,卻只是代表全校學生身高的一部分,也就是樣本。 回到「機率統計」頁面 樣本平均數(mean)不是母體平均數,樣本變異數(variance)也不是母體變異數,一個班40個人身高的平均數很難剛好是全校學生的身高平均數。 一個班40個人的身高變異數也不會是全校學生的身高變異數。 變異數計算 母體變異數的定義如下: 而樣本變異數的定義如下: 奇怪的地方 平均數 雖然樣本平均數不是母體平均數,不過,如果不斷重複從同一個母體抽樣平均,會得到一個近似母體平均數的數字。舉例來說,從一個學校所有學生中,不斷隨機選出40個學生取平均數,再將這些平均數平均,結果會接近直接算全校學生的身高平均數。 也就是說樣本平均數的期望值就是母體平均數: 變異數 樣本變異數跟母體變異數就沒這麼單純了。奇怪的地方是,為什麼樣本變異數公式的除術是n-1,而不是像平均數計算一樣用n? 為何樣本變異數要除的是(n-1)? 除數為n的話,變異數會太小 如果樣本變異數的除數是n,樣本變異數就會常常比母體變異數小。為什麼呢? 因為,樣本是從母體抽取的,抽樣的數據算出平均,並且抽樣的數據會相對的接近抽樣的平均,總不會剛好抽出的樣本平均數剛好是母體平均數,且樣本數據離樣本平均數就像母體數據離母體平均數一樣分散吧? 假設母體數據為0-99的整數,共100個數據,從中選出10個數字,然後計算樣本的平均數,分別用n及n-1當作除數算出變異數,連續執行200次,並將200個樣本平均數及200個樣本變異數平均。 也就是取得樣本平均數及樣本變異數的期望值,結果如下: 母體平均數 = 49.5

如何在Chart.js的圖上加上X軸或Y軸名稱

 Chart.js可以幫助網頁顯示各類圖表,要在X軸及Y軸上標示名稱方法如下: 找到Chart物件。 在Chart物件內找到options。 在options內找到scales,若無,自行加上scales。 即可在scales下設定X軸及Y軸的標示。 程式碼範例 <div> <canvas id="myChart"></canvas> </div> <script src="https://cdn.jsdelivr.net/npm/chart.js"></script> <script> const labels = [ '1', '2', '3', '4', '5', '6', ]; const data = { labels: labels, datasets: [{ label: '數據', backgroundColor: 'rgb(255, 99, 132)', borderColor: 'rgb(255, 99, 132)', data: [0, 10, 5, 2, 20, 30, 45], }] }; const config = { type: 'line', data, options: {scales:{ x:{ title:{ display:true, text:"月" } }, y:{ title:{ display:true, text:"unit" } } } } }; var myChart = new Chart( document.ge

賭徒破產理論(Gambler's ruin)機率公式證明

賭徒破產理論(Gambler's ruin)指指的是兩位賭徒,每局賭1元,A賭徒有i元,B賭徒有n-i元,兩人不斷的賭,直到一人輸光為止。 回到「機率統計」頁面 前言 假設A賭徒勝率為p,輸的機率就是1-p,稱為q,我們要求算A贏光所有錢的機率。 讓p(i)代表A賭徒擁有i元的時候,獲得最後勝利的機率。 p(0) = 0,因為已經輸光所有錢並且賭局已結束。 p(n) = 1,因為已經贏光所有錢並且賭局已結束。 那麼p(i)呢? 遞迴公式(recursive formula) 假設A有i元,它下一局有可能贏,有可能輸。贏的機率為p,輸的機率為1-p = q。 不論這一局是贏還是輸,A要贏光所有錢的機率還是沒有算出來。 這局贏了,接下來贏光所有錢的機率為p(i+1)。 這局輸了,接下來贏光所有錢的機率為p(i-1)。 因此,p(i) = p*p(i+1) + q*p(i-1),且可以繼續延伸,例如p(i+1) = p*p(i+2) + q*p(i)、p(i-1) = p*p(i-) + q*p(i-2)... 每個公式需要套用原本的公式,稱為遞迴公式公式,而遞迴公式解法可以像解微分方程(differential equation)一樣,可以先用猜的! 例如dx/dt = rx,微分之後x還是在公式裡,可以先猜測x = e^y。 猜測 假設,p(i) = x i ,並帶入p(i) = p*p(i+1) + q*p(i-1),得到  x i   = p* x i+1  + q * x i-1 x = p* x 2  + q p* x 2  - x + q = 0 解一元二次方程式得 x = 1 或 x = q/p 微分方程 p(i) = x i , x = 1 或 x = q/p,且有兩已知數 p(0) = 0 及 p(n) = 1。 而x i 的x有兩個根(root),必須都帶入線性組合(linear combination)公式求解。 p(i) = A(1) i  + B ( q/p ) i  =  A +  B ( q/p ) i  p(0) = A + B = 0 , A = -B p(n) = A + B ( q/p ) n   = 1 A + B ( q/p ) n  = -B +  B ( q/p ) n  = B(-1 +  ( q/p ) n )

中央極限定理(central limit theorem)證明

中央極限定理(central limit theorem )指的是從一個獨立同分布(Independent and identically distributed, i.i.d)取出之變數數量趨近無限多時,其平均數(mean)將趨近常態分布(normal distribution)。 回到「機率統計」頁面 目錄: 動差母函數(moment generating function) 常態分布的動差母函數 中央極限定理證明 中央極限定理模擬 中央極限定理應用 動差母函數(moment generating function) 動差母函數為機率密度函數(probability density fFunction, PDF)及累積分佈函數(cumulative distribution function CDF)之外,另一種描述機率分布模型的一種方式。 定義 M X (t) = E[e tx ] 而 e tx 的泰勒級數(Taylor series)為 e tx  = 1 + tx + t 2 x 2 /2! +  t 3 x 3 /3! + ... 則 M X (t) 的泰勒級數為 M X (t) = E[e tx ]  = 1 + tE[x] +  t 2 /2! E[x 2 ] +  t 3 /3! E[x 3 ] + ... 因此,當t = 0時,以t取 動差母函數m次微分,就可以找到其分布模型的第m動差。 特性 M X+Y (t) = E[e t(x+y) ] =  E[e tx+ty ] =  E[e tx e ty ]  =  E[e tx ]  E[ e ty ] =  M X (t)  M Y (t)  常態分布的動差母

HYG、LQD 與 TLT 風險報酬比較

10 年期公債除了站上 4%,再撰寫這篇文章時,已經在 4.3% 徘迴,上次在 這篇文章 研究了現在是否應該要買 LQD 而不是 TLT,本篇文章我想研究非投資等級債是否更適合。 買點 HYG 現在 HYG 價格為 74.04,距離近一次低點 2020/3/20 的 69.75,差別為 5.794% LQD 上次低點在 2020/10/14 的 100.38 附近,與目前的 105.01 相差 4.612%。 TLT 上次低點在 2022/11/4 的 94.22 附近,與目前的 95.16相差 1%。 殖利率上升時,公司債的表現 TLT 2009-01-06 到 2010-01-05 跌了 16.364% 這段期間美國 30 年期公債殖利率從 3.04% 漲到  3.74%,漲了 0.7%。 TLT 2012-11-14 到 2013-11-13 跌了 15.701% 這段期間 美國 30 年期公債殖利率從 2.73% 漲到  3.83%,漲了 1.1%。 TLT 2016-07-29 到 2017-07-28 跌了 10.307% 這段期間 美國 30 年期公債殖利率從 2.18% 漲到  2.89%,漲了 0.71%。 TLT 2021-11-18 到 2023-8-15 跌了 32.695% 這段期間美國 30 年期公債殖利率從 1.97% 漲到  4.35%,漲了 2.38%。 結論 HYG 現在也很便宜,在公債殖利率還有可能持續上漲狀況下,表現可能勝過公債及投資等級公司債。