跳到主要內容

美國聯準會 2023 年 7 月 27 日鮑威爾記者會重點

美國聯準會 2023 年 7 月 27 日宣布升息 1 碼,將聯邦基準利率升至 5.25 %。看完 7 月 27 日鮑威爾記者會,整理出以下重點分享。

美國失業率還是很低

The unemployment rate remains low, at 3.6 percent. 
美國失業率保持在 3.6 %,處於歷史低點。


經濟軟著陸

Nominal wage growth has shown some signs of easing, and job vacancies have declined so far this year.  

名目薪資成長放緩,職務空缺下降,換句話說,就是就業市場放緩,是屬於經濟減速的情況,不過,從去年開始升息到現在,在通膨有放緩跡象下,沒有造成大量失業人口,可以說已經達成經濟軟著陸。

另外,美國就業狀況持續穩健,這也使聯準會能夠放心升息

鮑威爾重新強調通膨 2% 目標

We remain strongly committed to bringing inflation back down to our 2 percent goal.
鮑威爾不斷強調聯準會其中一項任務就是讓美國長期通膨維持在平均 2%。

核心通膨仍然太高

Over the 12 months ending in May, total PCE prices rose 3.8 percent; excluding the volatile food and energy categories, core PCE prices rose 4.6 percent. In June, the 12-month change in the Consumer
Price Index, or CPI, came in at 3.0 percent, and the change in the core CPI was 4.8 percent.

  • 五月份 PCE 上升 3.8%。
  • 五月份核心 PCE 上升 4.6%。
  • 六月份 PCE 上升 3.0%。
  • 六月份核心 PCE 上升 4.8%。
很多人預期明年聯準會就會降息,所用的數據都是 PCE 而不是核心 PCE,表面看起來 PCE 通膨 3% 感覺上是已經快達成聯準會通膨 2% 的目標。

不過,鮑威爾強調,要看核心 PCE 比較準,而核心 PCE 上升 4% 多,還是相當高。

美國利率處於緊縮狀況(實質利率為正)

聯邦基準利率超過 5% 而核心 PCE 才 4.8%,也就是美國正處在實質正利率的狀況,而實質正利率就是聯準會常常提到的「緊縮」,這種貨幣緊縮情況會減緩經濟活動。

何時降息?

鮑威爾提到目前正處於貨幣緊縮,後續對經濟的影響有待觀察,通常來說貨幣緊縮能減緩經濟活動,提高失業率,然後降低通貨膨脹,並且通膨要明顯下降,聯準會評估適當,才會降息。

結論

降息還要等

我認為核心通膨要明顯下降,聯準會才會考慮降息,而目前看到核心 PCE 還是太高,且沒有明顯下降趨勢,以下是美國近 5 年核心 PCE 走勢,看不出明顯下降。


停止升息比較可能

綜合評估鮑威爾提到美國實質正利率將使美國經濟放緩可降低通膨,且多次提到聯準會將密切觀察升息後對經濟的影響的延遲性,我認為聯準會會放慢升息腳步,然後繼續看美國失業率及核心通籐數據後,才可能降息。

資料來源:https://www.federalreserve.gov/newsevents.htm

留言

這個網誌中的熱門文章

母體變異數(population variance)、樣本變異數(sample variance)及自由度(degrees of freedom)

母體指的是所有的數據,樣本指的是從母體抽樣的數據,舉例來說,一個班級有40人,它們的身高,40個身高數據,若只針對這個班,就是母體,但是,卻只是代表全校學生身高的一部分,也就是樣本。 回到「機率統計」頁面 樣本平均數(mean)不是母體平均數,樣本變異數(variance)也不是母體變異數,一個班40個人身高的平均數很難剛好是全校學生的身高平均數。 一個班40個人的身高變異數也不會是全校學生的身高變異數。 變異數計算 母體變異數的定義如下: 而樣本變異數的定義如下: 奇怪的地方 平均數 雖然樣本平均數不是母體平均數,不過,如果不斷重複從同一個母體抽樣平均,會得到一個近似母體平均數的數字。舉例來說,從一個學校所有學生中,不斷隨機選出40個學生取平均數,再將這些平均數平均,結果會接近直接算全校學生的身高平均數。 也就是說樣本平均數的期望值就是母體平均數: 變異數 樣本變異數跟母體變異數就沒這麼單純了。奇怪的地方是,為什麼樣本變異數公式的除術是n-1,而不是像平均數計算一樣用n? 為何樣本變異數要除的是(n-1)? 除數為n的話,變異數會太小 如果樣本變異數的除數是n,樣本變異數就會常常比母體變異數小。為什麼呢? 因為,樣本是從母體抽取的,抽樣的數據算出平均,並且抽樣的數據會相對的接近抽樣的平均,總不會剛好抽出的樣本平均數剛好是母體平均數,且樣本數據離樣本平均數就像母體數據離母體平均數一樣分散吧? 假設母體數據為0-99的整數,共100個數據,從中選出10個數字,然後計算樣本的平均數,分別用n及n-1當作除數算出變異數,連續執行200次,並將200個樣本平均數及200個樣本變異數平均。 也就是取得樣本平均數及樣本變異數的期望值,結果如下: 母體平均數 = 49.5

如何在Chart.js的圖上加上X軸或Y軸名稱

 Chart.js可以幫助網頁顯示各類圖表,要在X軸及Y軸上標示名稱方法如下: 找到Chart物件。 在Chart物件內找到options。 在options內找到scales,若無,自行加上scales。 即可在scales下設定X軸及Y軸的標示。 程式碼範例 <div> <canvas id="myChart"></canvas> </div> <script src="https://cdn.jsdelivr.net/npm/chart.js"></script> <script> const labels = [ '1', '2', '3', '4', '5', '6', ]; const data = { labels: labels, datasets: [{ label: '數據', backgroundColor: 'rgb(255, 99, 132)', borderColor: 'rgb(255, 99, 132)', data: [0, 10, 5, 2, 20, 30, 45], }] }; const config = { type: 'line', data, options: {scales:{ x:{ title:{ display:true, text:"月" } }, y:{ title:{ display:true, text:"unit" } } } } }; var myChart = new Chart( document.ge

賭徒破產理論(Gambler's ruin)機率公式證明

賭徒破產理論(Gambler's ruin)指指的是兩位賭徒,每局賭1元,A賭徒有i元,B賭徒有n-i元,兩人不斷的賭,直到一人輸光為止。 回到「機率統計」頁面 前言 假設A賭徒勝率為p,輸的機率就是1-p,稱為q,我們要求算A贏光所有錢的機率。 讓p(i)代表A賭徒擁有i元的時候,獲得最後勝利的機率。 p(0) = 0,因為已經輸光所有錢並且賭局已結束。 p(n) = 1,因為已經贏光所有錢並且賭局已結束。 那麼p(i)呢? 遞迴公式(recursive formula) 假設A有i元,它下一局有可能贏,有可能輸。贏的機率為p,輸的機率為1-p = q。 不論這一局是贏還是輸,A要贏光所有錢的機率還是沒有算出來。 這局贏了,接下來贏光所有錢的機率為p(i+1)。 這局輸了,接下來贏光所有錢的機率為p(i-1)。 因此,p(i) = p*p(i+1) + q*p(i-1),且可以繼續延伸,例如p(i+1) = p*p(i+2) + q*p(i)、p(i-1) = p*p(i-) + q*p(i-2)... 每個公式需要套用原本的公式,稱為遞迴公式公式,而遞迴公式解法可以像解微分方程(differential equation)一樣,可以先用猜的! 例如dx/dt = rx,微分之後x還是在公式裡,可以先猜測x = e^y。 猜測 假設,p(i) = x i ,並帶入p(i) = p*p(i+1) + q*p(i-1),得到  x i   = p* x i+1  + q * x i-1 x = p* x 2  + q p* x 2  - x + q = 0 解一元二次方程式得 x = 1 或 x = q/p 微分方程 p(i) = x i , x = 1 或 x = q/p,且有兩已知數 p(0) = 0 及 p(n) = 1。 而x i 的x有兩個根(root),必須都帶入線性組合(linear combination)公式求解。 p(i) = A(1) i  + B ( q/p ) i  =  A +  B ( q/p ) i  p(0) = A + B = 0 , A = -B p(n) = A + B ( q/p ) n   = 1 A + B ( q/p ) n  = -B +  B ( q/p ) n  = B(-1 +  ( q/p ) n )

中央極限定理(central limit theorem)證明

中央極限定理(central limit theorem )指的是從一個獨立同分布(Independent and identically distributed, i.i.d)取出之變數數量趨近無限多時,其平均數(mean)將趨近常態分布(normal distribution)。 回到「機率統計」頁面 目錄: 動差母函數(moment generating function) 常態分布的動差母函數 中央極限定理證明 中央極限定理模擬 中央極限定理應用 動差母函數(moment generating function) 動差母函數為機率密度函數(probability density fFunction, PDF)及累積分佈函數(cumulative distribution function CDF)之外,另一種描述機率分布模型的一種方式。 定義 M X (t) = E[e tx ] 而 e tx 的泰勒級數(Taylor series)為 e tx  = 1 + tx + t 2 x 2 /2! +  t 3 x 3 /3! + ... 則 M X (t) 的泰勒級數為 M X (t) = E[e tx ]  = 1 + tE[x] +  t 2 /2! E[x 2 ] +  t 3 /3! E[x 3 ] + ... 因此,當t = 0時,以t取 動差母函數m次微分,就可以找到其分布模型的第m動差。 特性 M X+Y (t) = E[e t(x+y) ] =  E[e tx+ty ] =  E[e tx e ty ]  =  E[e tx ]  E[ e ty ] =  M X (t)  M Y (t)  常態分布的動差母

HYG、LQD 與 TLT 風險報酬比較

10 年期公債除了站上 4%,再撰寫這篇文章時,已經在 4.3% 徘迴,上次在 這篇文章 研究了現在是否應該要買 LQD 而不是 TLT,本篇文章我想研究非投資等級債是否更適合。 買點 HYG 現在 HYG 價格為 74.04,距離近一次低點 2020/3/20 的 69.75,差別為 5.794% LQD 上次低點在 2020/10/14 的 100.38 附近,與目前的 105.01 相差 4.612%。 TLT 上次低點在 2022/11/4 的 94.22 附近,與目前的 95.16相差 1%。 殖利率上升時,公司債的表現 TLT 2009-01-06 到 2010-01-05 跌了 16.364% 這段期間美國 30 年期公債殖利率從 3.04% 漲到  3.74%,漲了 0.7%。 TLT 2012-11-14 到 2013-11-13 跌了 15.701% 這段期間 美國 30 年期公債殖利率從 2.73% 漲到  3.83%,漲了 1.1%。 TLT 2016-07-29 到 2017-07-28 跌了 10.307% 這段期間 美國 30 年期公債殖利率從 2.18% 漲到  2.89%,漲了 0.71%。 TLT 2021-11-18 到 2023-8-15 跌了 32.695% 這段期間美國 30 年期公債殖利率從 1.97% 漲到  4.35%,漲了 2.38%。 結論 HYG 現在也很便宜,在公債殖利率還有可能持續上漲狀況下,表現可能勝過公債及投資等級公司債。