跳到主要內容

如何找到部落格主題或是利基(niche)

經營部落格總是要有一個主軸,稱為主題或是利基都可以。利基這個詞來自於英文的niche,在Google搜尋find blog niche(找尋部落格利基),就會出現許多寫部落格主題的建議。

歡迎加入粉絲專業:Quanist理財智

為什麼一定要有主題?

部落格也是有人當興趣寫得,甚麼東西都寫。我認為只要寫的文章幫助得到別人,內容有價值,就有機會排在Google搜尋引擎前面,即使部落格內文章主題五花八門。

雖然如此,如果想要切入賺錢的領域,建議就要稍微鎖定一下觀眾群,因為觀眾群自身遇到的問題如果從你的文章找到答案,同主題的問題也都可從同一個部落格找到文章,你就可以建議他們加入你的臉書粉絲專業,藉由粉絲專業回答問題,之後有什麼聯盟行銷機會,也可以直接在臉書發就好,比較快。

聯盟行銷文章靠Google排名會花比較久。粉絲用你的連結買比較快。

部落格主題不明確觀眾會比較難認識你。

找部落格主題-興趣

找尋部落格主題可以先從興趣開始,有人喜歡小說,有人喜歡歷史、,這些都可以成為部落格主題,這些主題還可以分成許多小主題。

用興趣為開端最大的好處是你在寫文章之前就已經知道關於這個主題很多事了,因為興趣,早就做了不少研究,而且也有自己的心得了。

找部落格主題-賺錢

如果非常想賺錢,也可以直接找好賺錢的主題直接開始。要找到好賺錢的主題,可以先做SEO研究。找出人們以較多搜尋的項目,整理好,腦力激盪出相關小主題,開始研究並撰文。

舉例來說,「ETF」光是在美國每月就有16萬左右的搜尋量,我可以在從ETF發揮,想出關於ETF所有的小主題,例如最佳ETF、各類ETF比較、他們的發行公司、經理人是誰、提倡ETF的有誰等等。

那個方式好?

因著興趣寫部落格最大的優勢是比較容易創造出原創且高價值的文章,因為自己會因著對該主題有興趣而深入研究;深入研究後比較容易產出原創文章。

但是選的主題又不一定是大家關注的,所以也不見得容易賺錢,

相對的,如果是只是因為想賺錢而寫,有時候會花比較多時間研究文章內容。

寫的主題最好是個人有興趣同時間又很多人有興趣且容易轉換成收入的主題。

主題範圍要大還是小?

主題涵蓋範圍可以很大,但是盡量要相關,而主題很小的優勢是部落格很容易排在搜尋結果前面。舉例來說,部落格主題如果是旅遊,範圍就非常廣,就要很有競爭力,文章要夠豐富,如果只是日本旅遊,關於日本旅遊的搜尋,會比較容易排在搜尋結果前面。

換句話說,部落格主題很大,每個小主題的文章量都要夠,不然部落格價值會讓人質疑,如果部落格主題是旅遊,卻只有日本旅遊的文章,那也怪怪的,必須要各國旅遊的內容都有。

留言

這個網誌中的熱門文章

母體變異數(population variance)、樣本變異數(sample variance)及自由度(degrees of freedom)

母體指的是所有的數據,樣本指的是從母體抽樣的數據,舉例來說,一個班級有40人,它們的身高,40個身高數據,若只針對這個班,就是母體,但是,卻只是代表全校學生身高的一部分,也就是樣本。 回到「機率統計」頁面 樣本平均數(mean)不是母體平均數,樣本變異數(variance)也不是母體變異數,一個班40個人身高的平均數很難剛好是全校學生的身高平均數。 一個班40個人的身高變異數也不會是全校學生的身高變異數。 變異數計算 母體變異數的定義如下: 而樣本變異數的定義如下: 奇怪的地方 平均數 雖然樣本平均數不是母體平均數,不過,如果不斷重複從同一個母體抽樣平均,會得到一個近似母體平均數的數字。舉例來說,從一個學校所有學生中,不斷隨機選出40個學生取平均數,再將這些平均數平均,結果會接近直接算全校學生的身高平均數。 也就是說樣本平均數的期望值就是母體平均數: 變異數 樣本變異數跟母體變異數就沒這麼單純了。奇怪的地方是,為什麼樣本變異數公式的除術是n-1,而不是像平均數計算一樣用n? 為何樣本變異數要除的是(n-1)? 除數為n的話,變異數會太小 如果樣本變異數的除數是n,樣本變異數就會常常比母體變異數小。為什麼呢? 因為,樣本是從母體抽取的,抽樣的數據算出平均,並且抽樣的數據會相對的接近抽樣的平均,總不會剛好抽出的樣本平均數剛好是母體平均數,且樣本數據離樣本平均數就像母體數據離母體平均數一樣分散吧? 假設母體數據為0-99的整數,共100個數據,從中選出10個數字,然後計算樣本的平均數,分別用n及n-1當作除數算出變異數,連續執行200次,並將200個樣本平均數及200個樣本變異數平均。 也就是取得樣本平均數及樣本變異數的期望值,結果如下: 母體平均數 = 49.5

如何在Chart.js的圖上加上X軸或Y軸名稱

 Chart.js可以幫助網頁顯示各類圖表,要在X軸及Y軸上標示名稱方法如下: 找到Chart物件。 在Chart物件內找到options。 在options內找到scales,若無,自行加上scales。 即可在scales下設定X軸及Y軸的標示。 程式碼範例 <div> <canvas id="myChart"></canvas> </div> <script src="https://cdn.jsdelivr.net/npm/chart.js"></script> <script> const labels = [ '1', '2', '3', '4', '5', '6', ]; const data = { labels: labels, datasets: [{ label: '數據', backgroundColor: 'rgb(255, 99, 132)', borderColor: 'rgb(255, 99, 132)', data: [0, 10, 5, 2, 20, 30, 45], }] }; const config = { type: 'line', data, options: {scales:{ x:{ title:{ display:true, text:"月" } }, y:{ title:{ display:true, text:"unit" } } } } }; var myChart = new Chart( document.ge

賭徒破產理論(Gambler's ruin)機率公式證明

賭徒破產理論(Gambler's ruin)指指的是兩位賭徒,每局賭1元,A賭徒有i元,B賭徒有n-i元,兩人不斷的賭,直到一人輸光為止。 回到「機率統計」頁面 前言 假設A賭徒勝率為p,輸的機率就是1-p,稱為q,我們要求算A贏光所有錢的機率。 讓p(i)代表A賭徒擁有i元的時候,獲得最後勝利的機率。 p(0) = 0,因為已經輸光所有錢並且賭局已結束。 p(n) = 1,因為已經贏光所有錢並且賭局已結束。 那麼p(i)呢? 遞迴公式(recursive formula) 假設A有i元,它下一局有可能贏,有可能輸。贏的機率為p,輸的機率為1-p = q。 不論這一局是贏還是輸,A要贏光所有錢的機率還是沒有算出來。 這局贏了,接下來贏光所有錢的機率為p(i+1)。 這局輸了,接下來贏光所有錢的機率為p(i-1)。 因此,p(i) = p*p(i+1) + q*p(i-1),且可以繼續延伸,例如p(i+1) = p*p(i+2) + q*p(i)、p(i-1) = p*p(i-) + q*p(i-2)... 每個公式需要套用原本的公式,稱為遞迴公式公式,而遞迴公式解法可以像解微分方程(differential equation)一樣,可以先用猜的! 例如dx/dt = rx,微分之後x還是在公式裡,可以先猜測x = e^y。 猜測 假設,p(i) = x i ,並帶入p(i) = p*p(i+1) + q*p(i-1),得到  x i   = p* x i+1  + q * x i-1 x = p* x 2  + q p* x 2  - x + q = 0 解一元二次方程式得 x = 1 或 x = q/p 微分方程 p(i) = x i , x = 1 或 x = q/p,且有兩已知數 p(0) = 0 及 p(n) = 1。 而x i 的x有兩個根(root),必須都帶入線性組合(linear combination)公式求解。 p(i) = A(1) i  + B ( q/p ) i  =  A +  B ( q/p ) i  p(0) = A + B = 0 , A = -B p(n) = A + B ( q/p ) n   = 1 A + B ( q/p ) n  = -B +  B ( q/p ) n  = B(-1 +  ( q/p ) n )

中央極限定理(central limit theorem)證明

中央極限定理(central limit theorem )指的是從一個獨立同分布(Independent and identically distributed, i.i.d)取出之變數數量趨近無限多時,其平均數(mean)將趨近常態分布(normal distribution)。 回到「機率統計」頁面 目錄: 動差母函數(moment generating function) 常態分布的動差母函數 中央極限定理證明 中央極限定理模擬 中央極限定理應用 動差母函數(moment generating function) 動差母函數為機率密度函數(probability density fFunction, PDF)及累積分佈函數(cumulative distribution function CDF)之外,另一種描述機率分布模型的一種方式。 定義 M X (t) = E[e tx ] 而 e tx 的泰勒級數(Taylor series)為 e tx  = 1 + tx + t 2 x 2 /2! +  t 3 x 3 /3! + ... 則 M X (t) 的泰勒級數為 M X (t) = E[e tx ]  = 1 + tE[x] +  t 2 /2! E[x 2 ] +  t 3 /3! E[x 3 ] + ... 因此,當t = 0時,以t取 動差母函數m次微分,就可以找到其分布模型的第m動差。 特性 M X+Y (t) = E[e t(x+y) ] =  E[e tx+ty ] =  E[e tx e ty ]  =  E[e tx ]  E[ e ty ] =  M X (t)  M Y (t)  常態分布的動差母

HYG、LQD 與 TLT 風險報酬比較

10 年期公債除了站上 4%,再撰寫這篇文章時,已經在 4.3% 徘迴,上次在 這篇文章 研究了現在是否應該要買 LQD 而不是 TLT,本篇文章我想研究非投資等級債是否更適合。 買點 HYG 現在 HYG 價格為 74.04,距離近一次低點 2020/3/20 的 69.75,差別為 5.794% LQD 上次低點在 2020/10/14 的 100.38 附近,與目前的 105.01 相差 4.612%。 TLT 上次低點在 2022/11/4 的 94.22 附近,與目前的 95.16相差 1%。 殖利率上升時,公司債的表現 TLT 2009-01-06 到 2010-01-05 跌了 16.364% 這段期間美國 30 年期公債殖利率從 3.04% 漲到  3.74%,漲了 0.7%。 TLT 2012-11-14 到 2013-11-13 跌了 15.701% 這段期間 美國 30 年期公債殖利率從 2.73% 漲到  3.83%,漲了 1.1%。 TLT 2016-07-29 到 2017-07-28 跌了 10.307% 這段期間 美國 30 年期公債殖利率從 2.18% 漲到  2.89%,漲了 0.71%。 TLT 2021-11-18 到 2023-8-15 跌了 32.695% 這段期間美國 30 年期公債殖利率從 1.97% 漲到  4.35%,漲了 2.38%。 結論 HYG 現在也很便宜,在公債殖利率還有可能持續上漲狀況下,表現可能勝過公債及投資等級公司債。